Recon Core subproject III MRI Reconstruction Using Graph Cuts:

Ashish Raj, Weill Cornell Medical College New York

- A new graph-based algorithm *
- Inspired by advanced robotic vision, computer science

- Operations on this graph produce reconstructed image!
 - •Raj et al, Magnetic Resonance in Medicine, Jan 2007,
 - •Raj et al, Computer Vision and Pattern Recognition, 2006 •Singh et al., MRM (to appear)

Project Summary

- Aim1: To apply EPIGRAM to fast high-resolution structural brain imaging
 - Image priors to be empirically evaluated
- Aim 2: Extending the method from 2D to 2D + time data
- Aim 3: Validation
- Aim 4: Developing new efficient, feasible Graph algorithms

Significant advances were made in all aims (except Aim 3)

Least squares solution

Least squares estimate:

$$(\hat{x}(p),\hat{x}(q)) = \arg\min_{x(p),x(q)} \sum_{l \in \mathsf{Coils}} \left[y_l(p) - s_l(p) x(p) - s_l(q) x(q) \right]^2$$

- -Famous MR algorithm: SENSE (1999)
- Linear system

EPIGRAM Summary

Finds the MAP estimate

$$\widehat{x} = \arg\min_{x} E(x) \equiv \left[\|y - Hx\|^2 + \lambda G(x) \right]$$
Makes Hx close to y

Makes x piecewise smooth

Used Markov Random Field priors

$$G(x) = \sum_{(p,q)\in\mathcal{N}} V(x_p - x_q)$$

-If V "levels off", this preserves edges

Potts function

New Developments (I):

Extension of EPIGRAM from 2D to 3D

Fast EPIGRAM

Phase-constrained reconstruction

Phase Constrained EPIGRAM: Reff = 4.5

Regularized SENSE

New Developments (II):

Fast EPIGRAM – uses "jump moves" rather than "expansion moves"
 Up to 50 times faster!

New, Faster Graph Cut Algorithm: Jump Moves

- •Reconstruction time of EPIGRAM (alpha expansion) vs Fast EPIGRAM (jump move)
 - after 5 iterations over [32, 64, 128, 256, 512] gray scale labels
 - image size 108x108 pixels.
- Linear versus exponential growth in in reconstruction time

Jump Move Results: Cardiac Imaging, R=4

•reconstruction for cine SSFP at R = 4

Regularized SENSE $(\mu = 0.1)$

Regularized SENSE $(\mu = 0.5)$

Fast EPIGRAM

New Developments (III):

Automatically Learning Image Priors

- The most important aspect of EPIGRAM is choice of prior
- What is the most appropriate prior model?
- Recon performance depends crucially on prior model
- •Recall:

 $V(\delta) = |0.1|\delta|^2$

$$\hat{x} = \arg\min_{x} E(x) \equiv \left[\|y - Hx\|^2 + \lambda G(x) \right]$$

$$G(x) = \sum_{(p,q) \in \mathcal{N}} V(x_p - x_q)$$

Form of V determines recon image

$$V(\delta) = 0.2|\delta|^2$$

 $V(\delta) = 0.1 \min(50, |\delta|)$

New Developments (III):

Automatically Learning Image Priors

- New idea: automatically learning what prior model best fits brain MRI
- Generalization of edge-preserving Gibbs priors successful in EPIGRAM
- Define a class of prior distributions \rightarrow mixture of various powers

$$G(x) = \sum_{(p,q)\in\mathcal{N}} V(x_p - x_q)$$

$$image \quad Diff image \\ \delta = x_1 - x_2$$

$$Pr(x) = Pr(\delta) \propto \exp\left(-\frac{1}{2M} \sum_{\delta} V_{\gamma,\alpha,K}(\delta)\right)$$

$$V_{\gamma,\alpha,K} = \sum_{i \in \gamma} \frac{\alpha_i \min(\delta^{p_i}, K_i^{p_i})}{p_i}.$$

$$exponent \quad cutoff$$

$$Mixture \quad weight$$

$$Proposed prior model$$

Learning Image Priors: Technique

- Used Markov chain Monte Carlo (McMC) technique to learn unknown parameters of prior model
- McMC sampling is based on Metropolis-Hastings algorithm
- After 1000s of iterations, gives a posterior distribution of the model
- We use the maximum of this inferred posterior

Histogram of various exponents "visited" by McMC sampler

Learning Image Priors: Results

- Found a strong maximum of posterior
- Inferred model: exponent = 0.5, cutoff = 25

We believe this prior will be superior to previous prior Results on brain data awaited

Learning Image Priors: Simulations

- Shepp-Logan head phantom with different noise and blur (PSF)
- Width of Gaussian blur kernel: 0, 2, 4, 6, 8, 10, 20
- Inferred model should depend on size of blur
 - (more blurry image → higher exponent)

Figure 1: The different images corresponding to the different widths of Gaussian blur.

Learning Image Priors: Simulations

Result: found almost linear dependency

Blur Width	Parallel Tempering, $T = 1$	Regular Sampling, $T = 1$
0	$\min(\delta, 57.70)^{0.3}$	$\min(\delta, 55.67)^{0.3}$
2	$\min(\delta, 17.57)^{0.5}$	$\min(\delta, 16.56)^{0.5}$
4	$\min(\delta, 7.79)^{0.7}$	$\min(\delta, 7.77)^{0.7}$
6	$\min(\delta, 4.46)^{1.1}$	$\min(\delta, 4.47)^{0.9}$
8	$\min(\delta, 3.14)^{1.3}$	$\min(\delta, 3.07)^{1.3}$
10	$\min(\delta, 2.24)^{1.7}$	$\min(\delta, 2.21)^{1.7}$
20	$\min(\delta, 1.93)^{1.9}$	$\min(\delta, 1.91)^{1.9}$
Brain MRI	$\min(\delta, 11)^{0.5}$	$\min(\delta, 11.67)^{0.5}$

Table 1: The estimate of the MAP for the 7 different blurred Shepp-Logan Phantoms, as well as brain MR images.

New Developments (IV):

- New graph cut algorithm to replace EPIGRAM does not use expansion moves at all
- Expect o(10-100x) computational speed up
- Based on exploring null-space of system matrix H

$$E(x) \equiv \left[\|y - Hx\|^2 + \lambda G(x) \right]$$

- Let D = null(H), x_0 be any solution to y = Hx
- Let $x = x_0 + D\eta$. Then $y Hx = y Hx_0$ and $E(x) = \lambda G(\eta)$
- •Henceforth we seek graph cut moves on η rather than x
- Since nullspace is much smaller than space of x, this is much more efficient